Abstract

The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 ± 0.1 mol ADP, 0.5 ± 0.2 mol GDP, and 0.8 ± 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P1 decreased the amount of tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodikticus synthesize [32P]GTP from [32P]P1 using malate as electron donor for oxidative phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.