Abstract
This paper identifies all statistically significant dyad symmetry combinations in the Epstein-Barr virus genome. The distribution of long dyad symmetry pairings emphasizes two regions, the 5' third of the 3.1-kilobase-pair (kbp) repeat and the oriP region, the latter essential for Epstein-Barr virus replication during latency. A 600-base-pair (bp) stretch in the 3.1-kbp repeat can establish an extended hairpin loop of stem length in excess of 208 bp of predominantly G + C stacking. Moreover, the 3.1-kbp repeat has the potential to form a wide variety of secondary structures based on juxtapositions of sizable palindromes, close dyad symmetry pairings, and direct repeats. The 3.1-kbp repeat presents several features that portend it as an important control region. The oriP region contains an abundance of statistically significant dyad symmetry combinations that strongly correlate with the "21 X 30 bp" tandem repeat units and four truncated copies of this repeat unit 1 kbp downstream. Each of the units centers on the same approximately 30-bp palindrome. Contrasts in the content and the secondary structure formations associated with the 3.1-kbp repeat units versus those of the oriP region are discussed in relation to viral or cellular function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.