Abstract

This paper establishes that recombination drives the evolution of GC content in a significant way. Because the human P-arm pseudoautosomal region (PAR1) has been shown to have a high recombination rate, at least 20-fold more frequent than the genomic average of approximately 1 cM/Mb, this region provides an ideal system to study the role of recombination in the evolution of base composition. Nine non-coding regions of PAR1 are analyzed in this study. We have observed a highly significant positive correlation between the recombination rate and GC content (rho = 0.837, p < or = 0.005). Five regions that lie in the distal part of PAR1 are shown to be significantly higher than genomic average divergence. By comparing the intra- and inter-specific AT->GC -GC->AT ratios, we have detected no fixation bias toward GC alleles except for L254915, which has excessive AT-->GC changes in the human lineage. Thus, we conclude that the high GC content of the PAR1 genes better fits the biased gene conversion (BGC) model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.