Abstract

Biological invasion provides a promising system for studying rapid environmental accommodation and adaptation in the wild. Mounting evidence indicates that epigenetic modifications such as DNA methylation play crucial roles in rapid local accommodation and adaptation. Thus, we hypothesize that different local environments can trigger methylation divergence among marine invasive populations at fine geographical scales. In this study, we examined population methylation patterns in the invasive ascidian, Ciona intestinalis, along the Atlantic coast of Nova Scotia, Canada, where significant temperature differences exist at defined locations along the coast. Using the methylation-sensitive amplification polymorphism (MSAP) technique, we observed a high level of intra- and inter-population diversity, as well as significant population methylation differentiation. We identified a correlation between local environments and methylation patterns, and further consistently recovered 14 temperature-related subepiloci by using multiple analyses. All these results demonstrate a substantial role of temperature in shaping population methylation patterns and an epigenetic response to environmental changes during range expansions. The complex fine-scale methylation structures among populations of C. intestinalis observed in this study suggest that multiple biotic and abiotic factors, as well as their interactions, should be further investigated to reveal epigenetic mechanisms of local accommodation and adaptation during biological invasions in marine ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.