Abstract
Starting from a hypothetical but fundamental charge/discharge sequence, the topic of nonlinear optical switching in atomic clusters built from silicon and alkali metals is opened up. The outcomes presented in this work, obtained with ab initio methods of exceptional predictive capabilities, offer strong evidences that sizable hyperpolarizability contrasts between neutral and charged alkali metal doped cluster forms might be simultaneously accomplished. The observed switching procedure involves redox polyatomic clusters formed by Si atoms. These centers function as electron acceptors at the ground state and as electron donors at the excited states facilitating low energy charge transfer transitions upon electronic excitation. © 2014 Wiley Periodicals, Inc.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.