Abstract

Antiplatelet therapy with clopidogrel is one of the most common therapies given to patients worldwide. However, the clinical efficacy and toxicity of clopidogrel is not constant in every patient due to interindividual variations. There are several factors that contribute to these interindividual differencies such as SNPs in genes of specific receptors and enzymes. PON1 (paraoxonase 1) plays an important role in the bioactivation of clopidogrel. Single nucleotide polymorphisms of this gene decrease the activity of paraoxonase enzyme and lead to an unefficient clopidogrel effect. P2RY12 (purinergic receptor P2Y, G-protein coupled, 12) gene is coding a receptor, which is situated on the surface of the platelets and plays a role in ADP-induced platelet aggregation. In this study we investigated 2 functional SNPs of PON1 gene (rs662 and rs854560) and 3 variants of the P2RY12 gene (rs2046934, rs6798347, rs6801273) in samples pooled from average Hungarian Roma and Hungarian population samples with PCR-RFLP method. For the PON1 variants we detected that the R allele frequency was significantly lower in the Roma group compared to the Hungarian population. (0.249 vs 0.318 p < 0.001). By contrast, the frequency of the M allele was significantly higher in Roma than in Hungarians (0.332 vs 0.290 p < 0.05). For the 3 P2RY12 variants we could find significant differencies only in rs2046934: the frequency of the CC genotype is 7 times higher in Hungarians than in Romas (1.4 vs 0.2 %, p < 0.05). The data presented here represent a unique genetic profile in Roma people that has not been reported for other populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call