Abstract

The nature of reverse leakage current characteristics in InGaN/GaN blue light emitting diodes (LEDs) on freestanding GaN crystals detached from a Si substrate is investigated for the first time, using temperature-dependent current-voltage (T-I-V) measurement. It is found that the Si-based homoepitaxial InGaN/GaN LEDs exhibit a significant suppression of the reverse leakage current without any additional processes. Their conduction mechanism can be divided into variable-range hopping and nearest neighbor hopping (NNH) around 360 K, which is enhanced by Poole-Frenkel emission. The analysis of T-I-V curves of the homoepitaxial LEDs yields an activation energy of carriers of 35 meV at −10 V, about 50% higher than that of the conventional ones (Ea = 21 meV at −10 V). This suggests that our homoepitaxial InGaN/GaN LEDs bears the high activation energy as well as low threading dislocation density (about 1 × 106/cm2), effectively suppressing the reverse leakage current. We expect that this study will shed a light on the high reliability and carrier tunneling characteristics of the homoepitaxial InGaN/GaN blue LEDs produced from a Si substrate and also envision a promising future for their successful adoption by LED community via cost-effective homoepitaxial fabrication of LEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.