Abstract

An instrument for the automatic preparation of microspheres was designed and manufactured, and by which cells were immobilized as efficient biocatalyst with small particle diameter, high crosslinking uniformity, and high porosity. The concentration of polymer solution, crosslinking agent and other conditions for preparing the cells microspheres were determined, and the conversion conditions of isonicotinic acid from 4-cyanopyridine were optimized to minimize mass-transfer limitations, and improve thermal and storage stability. The immobilized cells microspheres, which were continuously used for 23 batches, showed a total transformation capacity of 4.6 mol/L 4-cyanopyridine and a cumulative mass of 566.31 g/L of isonicotinic acid, which demonstrated the potential of the durable biocatalyst with efficient conversion capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.