Abstract

A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect on water resistance and enhancement of low temperature activity of Pd/Al2O3 catalysts. The optimal mole ratio between Na and Pd was 1:1. The properties of the prepared catalysts were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (O2-TPD), and in situ DRIFTS. Results indicated that the addition of Na not only decreased the content of adsorbed water species but also increased the amount of liable surface oxygen species, which are likely the key factors for the excellent water resistance of the catalyst. Na addition also improved the mobility of the lattice oxygen species, which was favorable for catalytic activity. Moreover, the well-dispersed negatively charged Pd particles and suitable redox properties derived from Na addition also contributed to the improved performance and water resistance of the Na1Pd1/Al2O3 catalyst. In situ DRIFTS results revealed that benzene was oxidized to maleate and acetate species via intermediate o-benzoquinone species, which finally turned into harmless CO2 and H2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.