Abstract

AbstractAbstract 1694 Introduction:Myelodysplastic syndromes are a heterogeneous group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis, peripheral cytopenias and dysplastic bone marrow cells, with frequent progression to acute myeloid leukemia. Because of its heterogeneous nature, modeling of this disease has proven to be very difficult in cell culture systems as well as mice. In addition, attempts to generate a xenotransplant model in immuno-compromised mice have only achieved very low levels of engraftment that are often transient, making it very difficult to study the biology of this disease in vivo. Recent studies in mice have shown that conditional impairment of the small RNA processing enzyme Dicer in mouse osteolineages induced a stromal niche that promoted myelodysplasia, leading to the hypothesis that abnormal bone marrow stromal cells might provide a “fertile soil“ for the expansion of the malignant clone. Patients and Methods:To the date of writing, a total of 12 primary hematopoietic stem cell- and mesenchymal stroma cell (MSCs) samples selected from patients with MDS have been isolated and xenotransplanted into NOD.Cg-Prkdscid Il2rgtm1Wjl/Szj (NSG) mice: MDS 5q- (n=7), MDS RCMD (n=3), MDS RAEB I (n=1), MDS-U (n=1). Engraftment was monitored by FACS using human specific antibodies to CD45, CD34 and CD38. In addition cell cycle behavior was analyzed by Ki67/Hoechst staining. Mesenchymal stromal cells were characterized using previously described stromal markers: CD105, CD271, CD73, CD166, CD90, CD146 and CD44. To isolate genomic DNA and RNA for molecular analyses, MDS xenografts were flow sorted based on human CD45 expression. Molecular characterization of primary MDS samples and xenotransplants was carried out by serial copy number analysis using Affymetrix SNP 6.0 Arrays, metaphase cytogenetics and direct sequencing of known mutations in the transplanted MDS samples. Results:We show, that the concomitant transplantation of MDS-derived mesenchymal stromal cells with the corresponding hematopoietic patient stem/progenitor cells leads to significant and long-term engraftment (0.1 – 15% for up to 23 weeks) of cells isolated from IPSS low and intermediate risk MDS patients. In addition to the bone marrow, MDS hematopoietic cells also infiltrate other hematopoietic compartments of the mouse including the spleen. Significant engraftment of cells with progenitor (CD34+CD38+) as well as stem cell phenotype (CD34+CD38-) was observed, which is consistent with engraftment of an MDS stem cell that sustains long-term hematopoiesis. SNP array analysis confirmed the clonal origin of the engrafted cells as MDS xenografts harboring the identical genomic lesions as present in the patient disease. Conclusion:We present a robust MDS xenograft model of low risk MDS entities based on the concomitant transplantation of primary MDS hematopoietic cells with MSCs from the same patients. This model does not only allow to study the biology of this disease in vivo but also the molecular and cellular interactions between MSCs and hematopoietic MDS cells. In addition it provides a useful platform to study the effects of new experimental therapeutic agents for the treatment of MDS in molecularly defined MDS cells. Disclosures:No relevant conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.