Abstract

The direct arylation polycondensation (DArP) appeared as an efficient method for producing semiconducting polymers but often requires acceptor monomers with orienting or activating groups for the reactive carbon-hydrogen (C-H) bonds, which limits the choice of acceptor units. In this study, we describe a DArP for producing high-molecular-weight all-acceptor polymers composed of the acceptor monomers without any orienting or activating groups via a modified method using Pd/Cu co-catalysts. We thus obtained two isomeric all-acceptor polymers, P1 and P2, which have the same backbone and side-chains but different positions of the nitrogen atoms in the thiazole units. This subtle change significantly influences their optoelectronic, molecular packing, and charge-transport properties. P2 with a greater backbone torsion has favorable edge-on orientations and a high electron mobility μe of 2.55 cm2 V-1 s-1 . Moreover, P2-based transistors show an excellent shelf-storage stability in air even after the storage for 1 month.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.