Abstract

Human telomere is composed of highly repeated hexanucleotide sequence TTAGGG and a 3′ single-stranded DNA tail. Many telomere G4 topologies characterized at atomic level by X-ray crystallography and NMR studies. Until now, various small ligands developed to interact with G-quadruplex mainly to stabilize the structure and least is known for its destabilization. In this study, we provide the first evidence of human telomeric G4 destabilization upon peptide binding in dilute and cell-mimicking molecular crowing conditions due to the changes in flanking bases of human telomeric sequences. Hence, our findings will open the new ways to target diseases related with increasing the efficiency of DNA replication, transcription or duplex reannealing. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call