Abstract
Abstract. Anthropogenic aerosols have increased significantly since the industrial revolution, driven largely by growth in emissions from energy use in sectors including power generation, industry, and transport. Advances in emission control technologies since around 1970, however, have partially counteracted emissions increases from the above sectors. Using the fully coupled Community Earth System Model, we quantify the effective radiative forcing (ERF) and climate response to 1970–2010 aerosol changes associated with the above two policy-relevant emission drivers. Emissions from energy-use growth generate a global mean aerosol ERF (mean ± 1 standard deviation) of -0.31±0.22 W m−2 and result in a global mean cooling (-0.35±0.17 K) and a precipitation reduction (-0.03±0.02 mm d−1). By contrast, the avoided emissions from advances in emission control technology, which benefit air quality, generate a global mean ERF of +0.21±0.23 W m−2, a global warming of +0.10±0.13 K, and global mean precipitation increase of +0.01±0.02 mm d−1. Despite the relatively small changes in global mean precipitation, these two emission drivers have profound impacts at regional scales, in particular over Asia and Europe. The total net aerosol impacts on climate are dominated by energy-use growth, from Asia in particular. However, technology advances outweigh energy-use growth over Europe and North America. Various non-linear processes are involved along the pathway from aerosol and their precursor emissions to radiative forcing and ultimately to climate responses, suggesting that the diagnosed aerosol forcing and effects must be interpreted in the context of experiment designs. Further, the temperature response per unit aerosol ERF varies significantly across many factors, including location and magnitude of emission changes, implying that ERF, and the related metrics, needs to be used very carefully for aerosols. Future aerosol-related emission pathways have large temporal and spatial uncertainties; our findings provide useful information for both assessing and interpreting such uncertainties, and they may help inform future climate change impact reduction strategies.
Highlights
Climate change is driven by changes in a combination of natural and anthropogenic factors (Stocker et al, 2013)
We perform time-slice model simulations using the fully coupled Community Earth System Model (CESM1), seeking to quantify the climate forcing and impacts of aerosol changes related to the above policyrelevant emission drivers at both global and regional scales
Note that CESM1 (CAM5) has a relatively larger aerosol forcing compared to other Coupled Model Intercomparison Project Phase 5 (CMIP5) models, likely due to the large cloud adjustments through cloud water path in MAM3 (Allen and Ajoku, 2016; Malavelle et al, 2017; Zhou and Penner, 2017)
Summary
Climate change is driven by changes in a combination of natural and anthropogenic factors (Stocker et al, 2013). Energy-use growth and technology advances are two of the major policy-relevant drivers of past aerosol changes via, for example, changes in power generation, industry, and transport These drivers are very likely to continue to play important but competing roles in modulating future emissions of aerosols and their precursor gases, as we gradually transit to a new energy structure. We perform time-slice model simulations using the fully coupled Community Earth System Model (CESM1), seeking to quantify the climate forcing and impacts of aerosol changes related to the above policyrelevant emission drivers (energy-use growth and technology advances) at both global and regional scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.