Abstract

Mechanical behavior of YBa2Cu3O7−x (Y123) superconductors exposed to Sn nanoparticles diffusion is determined by the way of Vickers microhardness (Hv) conducted at different applied loads (0.245N≤F≤2.940 N). Load dependent microhardness, load independent microhardness, elastic modulus, and yield strength values are estimated from the microhardness curves. Unpredictably, the findings of the Hv values reveal that the undiffused sample and Sn diffused sample prepared at 500 ∘C exhibit reverse indentation size effect (RISE) behavior while the other samples obey indentation size effect (ISE) nature. Further, we extract the load independent (true) microhardness using the Meyer’s law, proportional specimen resistance (PSR), elastic/plastic deformation (EPD), Hays–Kendall (HK) approach and indentation-induced cracking (IIC) model, and compare the true hardness with the apparent hardness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.