Abstract

The robust detection of quasi-periodic pulsations (QPPs) in solar and stellar flares has been the topic of recent debate. In light of this, we have adapted a method described by Vaughan (2005) to aid with the search for QPPs in flare time series data. The method identifies statistically significant periodic signals in power spectra, and properly accounts for red noise as well as the uncertainties associated with the data. We show how the method can be further developed to be used with rebinned power spectra, allowing us to detect QPPs whose signal is spread over more than one frequency bin. An advantage of these methods is that there is no need to detrend the data prior to creating the power spectrum. Examples are given where the methods have been applied to synthetic data, as well as real flare time series data with candidate QPPs from the Nobeyama Radioheliograph. These show that, despite the transient nature of QPPs, peaks corresponding to the QPPs can be seen at a significant level in the power spectrum without any form of detrending or other processing of the original time series data, providing the background trends are not too steep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call