Abstract

We consider the problem of testing for the presence of linear relationships between large sets of random variables based on a post-selection inference approach to canonical correlation analysis. The challenge is to adjust for the selection of subsets of variables having linear combinations with maximal sample correlation. To this end, we construct a stabilized one-step estimator of the euclidean-norm of the canonical correlations maximized over subsets of variables of pre-specified cardinality. This estimator is shown to be consistent for its target parameter and asymptotically normal, provided the dimensions of the variables do not grow too quickly with sample size. We also develop a greedy search algorithm to accurately compute the estimator, leading to a computationally tractable omnibus test for the global null hypothesis that there are no linear relationships between any subsets of variables having the pre-specified cardinality. We further develop a confidence interval that takes the variable selection into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.