Abstract

The internet of vehicles needs mobile communication systems for efficient communications. On the physical downlink control channel (PDCCH) of 5G, blind detection is performed to identify the downlink control information (DCI). Due to the uncertainty of DCI formats and PDCCH formats, the existing two-stage blind detection schemes separately decode every PDCCH code block under different DCI formats, leading to a high decoding complexity in the first stage. To reduce the detection complexity, this paper proposes an efficient DCI detection method, where a significance-test strategy is designed to detect the DCI formats. The significance-test strategy can forecast the DCI lengths without separately decoding the whole codeword, thus reducing the decoding complexity by several times. Moreover, the accuracy of the DCI detection is analyzed, with which the test scope of the test statistic is optimized for minimizing the decoding complexity on condition of meeting the detection accuracy requirements. Simulation results show that the proposed method significantly reduces the decoding complexity relatively to the existing two-stage detection schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.