Abstract

AbstractDetrital zircon U-Pb studies of mudstone provenance are rare but may preferentially fingerprint distal zircon sources. To examine this issue, Pierre Shale and Trinidad Sandstone deposited in a Late Cretaceous deltaic environment in the Raton Basin, Colorado (USA), were measured for detrital zircon U-Pb age by laser ablation–inductively coupled plasma–mass spectrometry. Two major detrital zircon age peaks at ca. 70 and 1690 Ma are found in both Pierre Shale and Trinidad Sandstone but in inversely varying proportions: 68% and 16%, respectively, for the finest zircon fraction (~15–35 μm) in the shale, and 25% and 32%, respectively, for the coarsest zircon fraction (~60–80 μm) in the sandstone. Proximal sources in the Sangre de Cristo Mountains, directly west of the Raton Basin, contain coarse-grained, ca. 1690 Ma zircon, whereas distal sources in Laramide uplifts and basins in Colorado, New Mexico, and Arizona contain fine-grained, ca. 70 Ma zircon. The results indicate that U-Pb zircon provenance of mudstone reflects availability of volcanic and other fine-grained source rocks rather than simply distal sources. U-Pb zircon provenance studies should routinely include mudstone units because these units may identify fine-grained zircon sources more reliably than sandstones alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call