Abstract

Activation of the melanocortin 1 receptor (MC1R) by α-melanocortin (α-MSH) stimulates eumelanin synthesis and enhances repair of ultraviolet radiation (UV)-induced DNA damage. We report on the DNA damage response (DDR) of human melanocytes to UV and its enhancement by α-MSH. α-MSH up-regulated the levels of XPC, the enzyme that recognizes DNA damage sites, enhanced the UV-induced phosphorylation of the DNA damage sensors ataxia telangiectasia and Rad3-related (ATR) and ataxia telangiectasia mutated (ATM) and their respect-ive substrates checkpoint kinases 1 and 2, and increased phosphorylated H2AX (γH2AX) formation. These effects required functional MC1R and were absent in melanocytes expressing loss of function (LOF) MC1R. The levels of wild-type p53-induced phosphatase 1 (Wip1), which dephosphorylates γH2AX, correlated inversely with γH2AX. We propose that α-MSH increases UV-induced γH2AX to facilitate formation of DNA repair complexes and repair of DNA photoproducts, and LOF of MC1R compromises the DDR and genomic stability of melanocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.