Abstract

Fertilization triggers a process called maternal-to-zygotic transition, in which the oocyte undergoes oocyte-to-embryo transition, leading to massive intracellular remodeling toward early embryogenesis. This transition requires the degradation of oocyte-derived components; however, the significance and mechanism of degradation of cell surface components remain unknown. In this review, we focused on the dynamics of plasma membrane proteins and investigated the relationship between embryonic development and endocytosis. Our survey of the extant literature on the topic led to the conclusion that clathrin-mediated endocytosis is essential for the progression of early embryogenesis and selective degradation of oocyte-derived plasma membrane proteins in mouse embryos, as reported by studies analyzing maternal cellular surface proteins, including a glycine transporter, GlyT1a. Evaluation of such endocytic activity in individual embryos may allow the selection of embryos with higher viability in assisted reproductive technologies, and it is important to select viable embryos to increase the rates of successful pregnancy and live birth. Although the early embryonic developmental abnormalities are mainly accompanied with chromosomal aneuploidy, other causes and mechanisms remain unclear. This review summarizes molecular biological approaches to early embryonic developmental abnormalities and their future prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.