Abstract
The microstructure and mechanical properties of materials saturate to steady states after severe plastic deformation (SPD). Despite the well-known effect of temperature on the steady-state microstructure, there is no general agreement on the significance of strain rate and the applicability of the Zener-Hollomon parameter in this regard. In this study, several pure metals (aluminum, copper, titanium, and iron) and a Cu–30Zn (wt%) brass alloy have been processed by a high-speed high-pressure torsion (HPT) equipment with controllable rotation speeds in the range of 0.06–60 rpm. It is found that crystallite/grain size, dislocation density, microhardness and shear stress at the steady state are reasonably rate-independent for the von Mises strain rates in the range of 0.004–20 s−1. Because both rates of grain refinement and of dynamic recrystallization are proportional to the strain rate, it is suggested that their balance, which determines the steady state, is rate-independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.