Abstract
This study investigates the interaction between fluid dynamics and electromagnetic fields, a complex problem that has not been extensively studied. The Lorentz force, which arises due to the interaction between magnetic fields and currents in a fluid is considered in this study. This research investigates the effects of a magnetic field, couple stress, and slip velocity on the behavior of a squeeze film (SF) formed between a porous flat and spherical plate. The Stokes equation for couple stress fluids is used to produce a generalized version of the Reynolds equation, which is then used to determine the film pressure. Also, this study considers the impact of a constant magnetic field orthogonal to the plate. The fluid in the porous region is governed by modified Darcy law. The effect of a uniform magnetic field perpendicular to the plate is considered. The bearing characteristics pressure, squeeze film time, and load-carrying capacity are graphically presented. The results revealed that the load-carrying capacity, pressure, and squeeze film time are reduced with a rise in slip and porousness parameters. The slip parameter decreases the values of film pressure, squeeze time, and load-carrying capacity as related to the no-slip case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.