Abstract

Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.

Highlights

  • Most harmful algal blooms (HABs) are formed by toxic or otherwise harmful dinoflagellate species that have potentially devastating effects on marine habitats including the closure of shellfish beds, massive fish kills, and death of other marine fauna [1]

  • Eutrophication has been indicated as one of the main factors contributing to the increase in frequency and geographic distribution of HABs observed in the past decades [39]

  • Numerical simulations indicated that parasites had greater impact on the development of dinoflagellate blooms than microciliates

Read more

Summary

Introduction

Most harmful algal blooms (HABs) are formed by toxic or otherwise harmful dinoflagellate species that have potentially devastating effects on marine habitats including the closure of shellfish beds, massive fish kills, and death of other marine fauna [1]. They are frequently initiated in semi-confined areas like harbors, lagoons, and estuaries where sudden nutrient pulses. Community Structure and Parasitic Control of Dinoflagellate Blooms. Curie International Outgoing Fellowship (IOF; grant agreement: MOHAB PIOF-GA-252260). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call