Abstract
Hematopoietic stem cells are the stem cells of the blood that are applied to treat hematological disorders by transplanting donor cells to a patient. Rarity of donors and low cell counts in alternative hematopoietic stem cell sources such as cord blood limit the clinical use of hematopoietic stem cells. Here, it is shown that bifunctional surfaces containing the adhesive RGD peptide together with the Notch‐activating Delta‐like 1 (DLL1)—provided in a nanopatterned or unpatterned manner in different densities—are able to enhance hematopoietic stem and progenitor cell proliferation. Nanopatterning allows determining the maximal distance between DLL1 molecules that results in efficient cell stimulation (40 nm). Applying unpatterned substrates with statistically distributed DLL1 shows that the elicited effects depend on ligand density and clustering (minimum 2 molecules/cluster). Thereby, the present study contributes to the development of cost‐efficient bioreactors for hematopoietic stem cell expansion and to deciphering how cells gain control over Notch signaling by DLL1 clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.