Abstract

The present study examines the importance of the Na+ current (INa) in the excitability of atrial and ventricular myocardium of the rainbow trout heart. Whole-cell patch-clamp under reduced sarcolemmal Na+ gradient showed that the density of INa is similar in atrial and ventricular myocytes of the trout heart, and the same result was obtained when INa was elicited by chamber-specific action potentials (AP) in normal physiological saline solution. However, the maximum rate (Vmax) of AP upstroke, measured with microelectrodes in intact trout heart, was 21% larger in atrium than ventricle, and thus in variance with the similar INa density of the two myocyte types. Furthermore, Vmax calculated from the INa was 2.1 and 3.2 times larger for atrium and ventricle, respectively, than the values obtained from the APs. The discrepancy between INa of isolated myocytes and Vmax of intact muscle is only partly explained by the inward rectifier K+ current (IK1), which overlaps INa and decreases the net depolarising current. Clear differences exist in the voltage dependence of steady-state activation and inactivation as well as in the inactivation kinetics of INa between atrial and ventricular myocytes. As a result of a more negative voltage dependence of INa activation, smaller IK1 and higher input resistance of atrial myocytes, the voltage threshold for AP generation is more negative in atrium than ventricle of the trout heart. These findings suggest that atrial muscle is more readily excitable than ventricular muscle, and this difference is partly due to the properties of the atrial INa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call