Abstract

Autosomal recessive, congenital chloride diarrhea (CLD) is a form of persistent secretory diarrhea, presenting with polyhydramnios and intractable diarrhea from birth. CLD is caused by mutations in the SLC26A3 gene, encoding a Na+-independent Cl/HCO3- exchanger. The diagnosis is generally made on the basis of high fecal chloride concentration in patients with serum electrolyte homoeostasis corrected by salt substitution. We aimed to evaluate the role of diagnostic genetic testing in CLD. Clinical and laboratory data were collected from 8 unrelated children diagnosed as having or suspected to have CLD. The evaluation included physical examination, routine clinical chemistry, and SLC26A3 mutation analysis by direct sequencing of DNA extracted from buccal swabs or peripheral leukocytes. CLD was initially diagnosed on high fecal chloride concentrations in 7 patients, and by mutation analysis in 1 patient. In 3 of these patients the correct diagnosis was made more than 6 months after birth. We identified SLC26A3 mutations on both alleles in all 8 patients with CLD, including 3 novel missense and 4 novel truncating mutations. We present a compilation of reported SLC26A3 mutations and polymorphisms. The diagnosis and therapy of CLD were considerably delayed in 3 of 8 patients from this series, highlighting the potential of misdiagnosing CLD. We add 7 novel mutations, including 3 missense changes of highly conserved residues to a total of 41 mutations in this gene. Molecular analysis is efficient and should be considered as a means of early diagnosis of CLD, especially if the clinical diagnosis remains uncertain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call