Abstract
Intergranular corrosion (IGC) of model alloys in the 6000-series, with and without 0.2 wt% Cu, was studied using an accelerated corrosion test (BS ISO 11846 B), FE-SEM and FE-TEM. Low Cu alloys (0.02wt%) did not exhibit IGC even though they contained excess Si. The high-Cu, naturally aged material (T4) was susceptible to severe superficial etching. In the underaged state (below peak strength), the Cu-containing material was highly susceptible to IGC. Materials aged to peak strength (T6) or overaged were only slightly susceptible to IGC, with localized, shallow attacks. FE-TEM investigation of the underaged material revealed scattered, small AlMgSiCu-type precipitates, as well as a Cu-enriched film along the grain boundaries. The overaged material showed more extensive, coarse grain boundary precipitation. However, the Cu-enriched film was still present at localized sites. The reduced susceptibility to IGC upon artificial ageing was attributed to breaking of the continuity of the grain boundary film. The possible role of matrix precipitation is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.