Abstract

Plastic pollution, particularly microplastics, poses a significant environmental challenge. This study aimed to address the urgent need for sustainable solutions to manage plastic waste. The degradation of polyethylene microplastics (PEMPs) and nylon 6,6 microplastics (NMPs) were investigated using bacterial culture isolates, isolated from a municipal landfill site and identified through 16 S rDNA as well as metagenomics techniques.The study demonstrated for the first time along with degradation mechanism. The isolates identified as Achromobacter xylosoxidans and mixed culture species in dominance of Pulmonis sp. were used to degrade PEMPs and NMPs. Achromobacter xylosoxidans reduced microplastic’s dry weight by 26.7% (PEMPs) and 21.3% (NMPs) in 40 days, while the mixed culture achieved weight reductions of 19.3% (PEMPs) and 20% (NMPs). The release of enzymes, laccase and peroxidases revealed C-C bond cleavage and reduced polymer chain length. The thermal studies (TGA and DSC) revealed changes in the thermal stability and transition characteristics of microplastics. The structural alterations on PEMPs and NMPs were recorded by FTIR analysis. Byproducts such as alkanes, esters, aromatic compounds and carboxylic acids released were identified by GC-MS. These results suggest the effectiveness of bacterial isolates in degrading PEMPs and NMPs, with potential for sustainable plastic waste management solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call