Abstract

This paper investigates the effect of chemical reactions on the flow of magnetized Maxwell fluid generated by an unsteady stretching surface. The thermal transport phenomenon is analyzed by using the Cattaneo-Christov theory. By applying the appropriate similarity transformations, the governing equations of motion turn into a set of nonlinear differential equations. For the velocity, temperature, and concentration fields, the resultant equations are then solved as series solutions using the homotopy analysis approach. Using graphical representations, the physical behavior of significant factors is examined in depth. The analysis reveals that higher Maxwell parameter values reduce the flow field while increasing energy transportation in the fluid flow. Further, it is noted that thermal distribution declines for the higher values of the thermal relaxation parameter. Additionally, the solutal distribution bootup for the increasing values of Schmidt number while it shows a decreasing trend for homogeneous and heterogeneous reactions strength. In order to verify our findings, a comparison to earlier research is also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.