Abstract

The rheological perspective of blood flow with the suspension of metallic or non-metallic nanoparticles through arteries having cardiovascular diseases is getting more attention due to momentous applications in obstructed hemodynamics, nano-hemodynamics, nano-pharmacology, blood purification system, treatment of hemodynamic ailments, etc. Motivated by the novel significance and research in this direction, a mathematical hemodynamics model is developed to mimic the hemodynamic features of blood flow under the concentration of hybrid nanoparticles through an inclined artery with mild stenosis in the existence of dominating electromagnetic field force, Hall currents, heat source, and porous substance. Copper (Cu) and copper oxide (CuO) nanoparticles are submerged into the blood to form hybrid nano-blood suspension (Cu-CuO/blood). The attribute of the medium porosity on the blood flow is featured by Darcy's law. The mathematical equations describing the flow are formulated and simplified under mild stenosis and small Reynolds number assumptions. To determine the analytical solution of the resulting nonlinear momentum equation, the homotopy perturbation method (HPM) is employed. Several figures are graphed to assess the hemodynamical contributions of various intricate physical parameters on blood flow phenomena through the inclined stenosed artery. Significant outcomes from graphical elucidation envisage that the hemodynamic resistance to the blood flow is reduced due to the dispersion of more hybrid nanoparticles in the blood. The hemodynamic resistance (impedance) increases approximately two times by dispersing 0.11% hybrid nanoparticles in the blood flow. The temperature of Cu-CuO/blood is found to be lower in comparison to Cu-blood and pure blood. Intensification of Hall parameter attenuates the wall shear stress at the arterial wall. The trapping phenomena are also outlined via streamline plots which exemplify the blood flow pattern in the stenosed artery under the variation of the emerging parameters. As anticipated, the addition of a large number of hybrid nanoparticles significantly modulates the blood flow pattern in the stenotic region. The novel feature of this model is the impressive impact of Hall currents on hybrid nanoparticle doped blood flow through the stenosed artery. There is another piece of significance is that HPM is the most suitable method to handle the nonlinear momentum equation under the aforementioned flow constraints. Outcomes of this simulation may be valuable for advanced study and research in biomedical engineering, bio-nanofluid mechanics, nano-pharmacodynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call