Abstract
High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montousse River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72–82%) and moderate for dissolved elements (0–20%). The hydrological functioning of the Montousse stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals – enriched by anthropogenic sources – associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.