Abstract

Empirical models used to predict thermocline depths of lakes have typically been based on physical and morpho-metric variables. However, lakes with appreciable levels of dissolved organic material, including those found on the Canadian Precambrian Shield (DOC levels 1.4-12.41 mg/l), have seldom been included in these models. Our analysis suggests that for such lakes, thermocline depth is linked strongly to light penetration (Secchi depth r = 0.83, light extinction r = 0.85) which is strongly related to DOC concentration (Secchi depth r = 0.91, light extinction r = 0.97). A multivariate regression based on small Canadian Shield lakes suggests that DOC is the most important predictor of thermocline depth. Maximum effective length, maximum depth, and chlorophyll a contribute significantly to the prediction power of the regression model, but are of secondary importance in the presence of DOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.