Abstract
Estimation of glottal closure instants (GCIs) from an electroglottograph (EGG) signal can aid in clinical applications involving the diagnosis and treatment of speech pathologies and can also serve as a ground truth to assess algorithms that estimate GCIs from speech signals. In this regard, the current work proposes a phase-difference-based approach that considers the symmetrized, differenced EGG (DEGG) signal to be the Fourier transform of an arbitrary even-signal, to estimate GCIs from EGG signals. The DEGG signal possesses sharp negative valleys at the GCIs and since the symmetrized DEGG is assumed to be a spectrum, these valleys correspond to zeros that lie outside the unit circle. The angular locations of these zeros, and in turn the locations of GCIs, can be derived from the phase-difference spectrum, since it possesses a value of around $$2\pi $$2? at these locations, the derivation of which is elaborated in the paper. The proposed algorithm is compared with the existing time of excitation generator, the high quality time of excitation algorithm, and the singularity in EGG by multiscale analysis algorithm, in terms of the identification, miss, and false alarm rates, and the identification accuracy, on normal and pathological EGG. The proposed algorithm is observed to outperform the rest with an identification rate of 98.28% in normal EGG and 96.90% in pathological EGG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.