Abstract

The Perth Basin is one of the major tectonic structures along the western continental margin of Australia and was initially formed through the rifting and break-up of the Indian and Australian plates. The severe tectonic movements accompanied and occurred after the break-up are responsible for the most structural elements and for the distribution of pore pressure in the basin.Investigations on the well log data from the Perth Basin have identified shale intervals which are characterised as overpressured in some parts of the basin, whereas similar shale intervals found to be normally pressured in other parts of the basin. The phenomena of overpressure have frequently been reported while drilling the same intervals. Based on this research, sections with overpressure were observed in the majority of the wells in the basal section of the Kockatea shale where there were less tectonic activities have been recorded. Normal pore pressure was observed in shallower wells in the Kockatea shales which were located within uplifted sections that were more tectonically active areas.Based on the results of this research, the pore pressure distribution in the Kockatea Shale varied significantly from one part of the Perth Basin to another as a result of compressive tectonic stress. Compressional tectonic activities either induced fracturing in shallower localities (e.g. Beagle Ridge, Cadda Terrace and the adjacent terraces) or removed part of the Kockatea Shale as a result of faulting resulting in overpressures being released. Regions with less intensity of the tectonic activities showed an increase in pressure gradients as approaching away from the centre of uplift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call