Abstract

ABCA1, ABCG1 transporters, and SR-B1 receptor are the major proteins involved in cholesterol efflux from cells. We superposed in silico the location of putative cholesterol (Chol)-binding motifs CRAC/CARC and CCM in human ABCA1, ABCG1, and SR-B1 with (1) transmembrane protein topology, (2) a profile of structural order of protein, and (3) with an influence of single amino acid substitutions on protein structure and function. ABCA1, ABCG1, and SR-B1 molecules contain 50, 19, and 13 Chol-binding motifs, respectively, that are localized either in membrane helices, or at membrane-water interface, or in water-exposed protein regions. Arginine residues in motifs that coincide with molecular recognition features within intrinsically disordered regions of the transporters are suggested to be important in cholesterol binding; cholesterol-arginine interaction may result in the induction of local order in protein structure. Chol-binding motifs in membrane helices may immobilize cholesterol, while motifs at membrane-water interface may be involved into the efflux of "active" cholesterol. Cholesterol may interfere with ATP binding in both nucleotide-binding domains of ABCA1 structure. For ABCA1 and ABCG1, but not for SR-B1, the presence of mirror code as a CARC-CRAC vector couple in the C-terminal helices controlling protein-cholesterol interactions in the outer and inner membrane leaflets was evidenced. We propose the role of Chol-binding motifs with different immersion in membrane in transport of different cholesterol pools by ABCA1 and ABCG1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call