Abstract

A novel feature, based on the chirp z-transform, that offers an improved representation of the underlying true spectrum is proposed. This feature, the chirp MFCC, is derived by computing the Mel frequency cepstral coefficients from the chirp magnitude spectrum, instead of the Fourier transform magnitude spectrum. The theoretical foundations for the proposal, and the experimental validation using product of likelihood Gaussians, to show the improved class separation offered by the proposed chirp MFCC, when compared with basic MFCC are discussed. Further, real world evaluation of the feature is performed using three diverse tasks, namely, speech–music classification, speaker identification, and speech commands recognition. It is shown in all three tasks that the proposed chirp MFCC offers considerable improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.