Abstract

Three-dimensional (3D) culture systems of human cancer cell lines have become popular experimental models for a variety of applications including drug screening. It is understood that the 2D and 3D cultures of the same cell line behave differently in several aspects. One such difference is in the duration of cell culture phases (the lag, log, plateau and the decline stages). We obtained 3D cultures of A549 cells on agarose hydrogels. We observed and compared the morphological differences in the progression of 2D and 3D cultures of A549 cells in a time-dependent manner. The morphological features along with the cell counts and viabilities obtained for the 2D and 3D cultures at different time intervals clearly indicate that the cell culture phases occurred as more extended one for the 3D cultures compared to that of the 2D counterparts. The plateau stage for the 2D and 3D cultures occurred at 48 and 69 h, respectively. Such cell culture phase durations can be different for different cell lines as a function of their doubling times. We propose that the cell culture phase durations for any cell line should be first established before using them for drug testing or for studies involving toxicity to obtain useful results from 3D cell cultures. Also, we propose that the late-exponential (lag) phase of 3D cultures of cancer cell lines is the most ideal one for drug testing owing to the various optimal features of the aggregates in this cell culture phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call