Abstract

To clarify the significance of catalase in peroxisomes, we have examined the effect of aminotriazole treatment of rats on the activity of beta-hydroxybutyryl-CoA dehydrogenase in liver peroxisomes. When the effect of H2O2 on the dehydrogenase activity was examined using an extract of liver peroxisomes from aminotriazole-treated rats, the acetoacetyl-CoA-dependent oxidation of NADH was found to increase considerably on the addition of dilute H2O2. Such an effect of H2O2 was not seen on the beta-hydroxybutyryl-CoA-dependent reduction of NAD nor with extracts from untreated animals. We then noticed that similar NADH oxidation was caused non-enzymatically by a mixture of acetoacetyl-CoA and H2O2. The oxidation was dependent on both acetoacetyl-CoA and H2O2, and was blocked by scavengers of oxyradicals such as ascorbate and ethanol. Degradation products formed during the reaction of acetoacetyl-CoA with H2O2 had no NADH oxidizing activity, indicating that effective oxidant(s) were generated during the reaction of H2O2 with acetoacetyl-CoA. No other fatty acyl-CoA so far examined nor acetoacetate could replace acetoacetyl-CoA in this reaction. Therefore, if H2O2 were to be accumulated in peroxisomes, it would decrease both NADH and acetoacetyl-CoA, thus affecting the fatty acyl-CoA beta-oxidation system. These results, together with our previous finding that peroxisomal thiolase was significantly inactivated by H2O2 [Hashimoto, F. & Hayashi, H. (1987) Biochim. Biophys. Acta 921, 142-150] suggest that the role of catalase in peroxisomes is at least in part to protect the fatty acyl-CoA beta-oxidation system from the deleterious action of H2O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.