Abstract

Although robotic vision systems offer a promising technology solution for rapid and reconfigurable in-process 3D inspection of complex and large parts in contemporary manufacturing, measurement accuracy poses a challenge for its wide deployment. One of the key issues in adopting a robotic vision system is to understand the extent of its measurement errors which are directly correlated with the calibration process. In this paper, a possible source of practical and inherent measurement uncertainties involved in the calibration process of a robotic vision system are discussed. The system considered in this work consists of an image sensor mounted on an industrial robot manipulator with six degrees of freedom. Based on a series of experimental tests and computer simulations, the paper gives a comprehensive performance comparison of different calibration approaches and shows the impact of measurement uncertainties on the calibration process. It has been found from the error sensitivity analysis that minor uncertainties in the calibration process can significantly affect the accuracy of the robotic vision system. Further investigations suggest that inducing errors in image calibration patterns can have an adverse effect on the hand–eye calibration process compared to the angular errors in the robot joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call