Abstract

During the production of iron(iii) oxide and silver nanoparticles where water is inevitable, little is known on the transport phenomenon in a rectangular cavity mounted with two heated fins on the bottom wall where buoyancy and Lorentz forces are significant. The natural convection heat transfer of hybrid nanofluid flow in a rectangular cavity mounted with two heated fins on the bottom wall is studied. The hybrid nanofluid containing the nanoparticles of $${\text{Fe}}_{3} {\text{O}}_{4}$$ and $${\text{Ag}}$$ with water as base fluid is considered for the analysis. The derived governing partial differential equations are non-dimensionalized and solved numerically by applying the finite element method. It was concluded that at lower Rayleigh number and higher Hartmann number laminar flow is visible and at higher $${\text{Ra}}$$ and lower $${\text{Ha}}$$ , turbulent flow is seen. The intensity of the velocity profile and streamline function rises with the Rayleigh number. The nanoparticle volume fraction also affects the thermal profile and streamlined function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.