Abstract

Computational dosimetry has become the main tool for estimating induced electric fields within brain tissues in transcranial direct current stimulation (tDCS) which is recently attracting the attention of researches for motor function disturbances such as Parkinson’s disease. This paper investigates the effect of including or excluding the very thin meninges in computing tDCS electric fields using CST software. For this purpose, two models of the brain with and without meninges were used to induce electric field with two DC current electrodes (2 mA) in regions of the model referring to M1 and Prefrontal Cortex (FP2) similar to tDCS. Considering meninges, the results have shown differences in the induced field showing that there might be problems with conventional models in which meninges are not taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.