Abstract

The current endeavor scrutinizes the flow of tangent hyperbolic fluid over a moving stretched surface. The characteristics of heat transfer are conferred by utilizing nonlinear radiation. Further features of mass transfer are characterized with activation energy. The problem is modeled in terms boundary layer equations by implementing the relative laws. The independent variables in the governing equations through suitable transformations are reduced which are further tackled numerically via RKF-45 technique. Several physical parameters are varied in order to evaluate the behaviors of velocity, temperature and concentration distributions. It is established that higher values of We parameter increases the velocity profile. Further it is obtained that rate of heat transfer enhances as Nr parameter increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.