Abstract

Chain dependent models for daily precipitation typically model the occurrence process as a Markov chain and the precipitation intensity process using one of several probability distributions. It has been argued that the mixed exponential distribution is a superior model for the rainfall intensity process, since the value of its information criterion (Akaike information criterion or Bayesian information criterion) when fit to precipitation data is usually less than the more commonly used gamma distribution. The differences between the criterion values of the best and lesser models are generally small relative to the magnitude of the criterion value, which raises the question of whether these differences are statistically significant. Using a likelihood ratio statistic and nesting the gamma and mixed exponential distributions in a parent distribution, we show indirectly that generally the superiority of the mixed exponential distribution over the gamma distribution for modeling precipitation intensity is statistically significant. Comparisons are also made with a common- a gamma model, which are less informative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.