Abstract

Abstract With the emphasis on the properties of titanium dioxide nanoparticles and numerous applications of chemical reactive distilled water due to bioconvection in the industries, nothing is known about the significance of adding titanium dioxide nanoparticles to an existing distilled water conveying aluminum oxide and zinc oxide nanoparticles when viscous dissipation, heat source, and higher buoyancy forces and thermal radiation are substantial. The governing partial differential equations that model the motion of both transport phenomena mentioned earlier were transformed into ordinary differential equations using appropriate similarity transmutations and solved with bvp4c (MATLAB built-in function). Multiple linear regression (i.e., a statistical tool used to explain outcomes related to engineering parameters of interest) was adopted for a deep scrutinization and exploration. The outcome of the analysis suggests that the thermal radiation parameter can be used to control the heat transferred via convection in the fluid flow. It is detected that the magnetic field parameter and volume fraction of nanoparticle parameters are useful to reduce the shear stress near the surface. The heat source ameliorates the fluid temperature, and the concentration of the fluid decreases with the rise in the chemical reaction parameter. Worthy to conclude that the Peclet and Schmidt number escalates the density number of motile microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.