Abstract

In this research letter, a numerical work is carried out to examine a steady, incompressible and two-dimensional laminar flow impact of third grade fluid model (non-Newtonian) over a stretchable surface with gyrotactic microorganisms. The flow is magnetized and conducting electrically through applied magnetic field and generated due to stretching phenomenon. The Buongiorno nanoliquid model is utilized in the mathematical modeling of the problem. Chemical reaction with activation energy is further accounted. Appropriate transformations leads to nonlinear differential system and tackled numerically with the help of Built-in-Shooting technique (ND-Solve) and results are plotted graphically. The influences of variables like chemical reaction parameter, Brownian motion parameter, activation energy parameter, thermophoresis parameter and bio-convection Lewis and Peclet numbers on the velocity, concentration, temperature and microorganisms are reported and discussed in details. Our obtain results reported that velocity field is declined for rising magnetic parameter. The thermal field and associated layer thickness is more subject to larger Brownian motion and thermophoresis parameters. The results are compared with past research work and good with breakthrough with them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.