Abstract

Abstract This research addresses the interesting rheological features of Jeffrey nanofluid containing gyrotactic microorganism over an accelerated configuration. The additional consequences of activation energy and thermal radiation are also encountered in the current flow problem. The characteristics of nanofluid is utilized by using Buongiorno’s nanofluid model, while the phenomenon of bioconvection is evaluated by Kuznestov and Nield model. Unlike traditional attempts, the analysis for thermal radiation is performed by using “one parametric approach” by expressing the Prandtl number and thermal radiation parameter in combined form, namely, effective Prandtl number. The governing equations reflecting the flow problem are analytically treated with the help of homotopic algorithm. The impact of flow parameters is graphically elaborated with relevant physical significance. Further, the numerical expressions for effective local Nusselt number, local Sherwood number, and motile density number with variation of flow parameters in articulated tabular form. It is observed that magnitude of skin friction coefficient oscillates periodically with time and magnitude of oscillation increases with increment of Deborah number and mixed convection constant. It is further emphasized that the temperature distribution is enhanced with buoyancy ratio constant and bioconvection Rayleigh number. The microorganism distribution increases with buoyancy ratio constant but reverse trend has been examined for Peclet number. The observations from the reported problem can be more effective for the development of bifurcation processes, biofuels, enzymes, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.