Abstract

Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally.Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards.Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68–200 ha−1 yr−1 for biological control of pests and from US$ 110–425 ha−1yr−1 for N mineralisation in the organic systems versus US$ 0 ha−1yr−1 for biological control of pests and from US$ 60–244 ha−1yr−1 for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750–4536 ha−1yr−1, with US$ 1585–2560 ha−1yr−1 in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields.Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES–rich agricultural systems, provided by non-traded species to global agriculture.

Highlights

  • Agroecosystems consume non-marketed ecosystem services (ES) provided by non-traded species for the production of marketed Ecosystem services (ES) (Porter et al, 2009; Wratten et al, 2013)

  • Sustainable intensification will require that many non-renewable resources are at least partially replaced by renewable resources, such as ES based on biological control or nitrogen fixation

  • Ten organic fields were selected from the above totals, one field being used per farm based on there being an arable crop grown at the time of the survey

Read more

Summary

Introduction

Agroecosystems consume non-marketed ecosystem services (ES) provided by non-traded species (e.g., predatory beetles and parasitic wasps provide biological control of insect pests, soil biota provide nutrient cycling) for the production of marketed ES (Porter et al, 2009; Wratten et al, 2013) These take the form of traded plant and animal products, which comprise the economic returns derived from farmland (Matson et al, 1997; Pretty et al, 2006). We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call