Abstract

DNA microarrays are important devices for high throughput measurements of gene expression, but no rational foundation has been established for understanding the sources of within-chip statistical error. We designed a specialized chip and protocol to investigate the distribution and magnitude of within-chip errors and discovered that, as expected from theoretical expectations, measurement errors follow a Lorentzian-like distribution, which explains the widely observed but unexplained ill-reproducibility in microarray data. Using this specially designed chip, we examined a data set of repeated measurements to extract estimates of the distribution and magnitude of statistical errors in DNA microarray measurements. Using the common "ratio of medians" method, we find that the measurements follow a Lorentzian-like distribution, which is problematic for subsequent analysis. We show that a method of analysis dubbed "median of ratios" yields a more Gaussian-like distribution of errors. Finally, we show that the bootstrap algorithm can be used to extract the best estimates of the error in the measurement. Quantifying the statistical error in such measurements has important applications for estimating significance levels, clustering algorithms, and process optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.