Abstract

BackgroundAlthough fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis. We explore the possibility of applying the Significance Analysis of Microarray (SAM) method (PNAS 98:5116-5121) to a differential proteomics problem of two samples with replicates. The quantitative proteomic analysis was carried out with nanoliquid chromatography/linear iron trap-Fourier transform mass spectrometry. The biological sample model included two Mycobacterium smegmatis unlabeled cell cultures grown at pH 5 and pH 7. The objective was to compare the protein relative abundance between the two unlabeled cell cultures, with an emphasis on significance analysis of protein differential expression using the SAM method. Results using the SAM method are compared with those obtained by fold change and the conventional t-test.ResultsWe have applied the SAM method to solve the two-sample significance analysis problem in liquid chromatography/mass spectrometry (LC/MS) based quantitative proteomics. We grew the pH5 and pH7 unlabelled cell cultures in triplicate resulting in 6 biological replicates. Each biological replicate was mixed with a common 15N-labeled reference culture cells for normalization prior to SDS/PAGE fractionation and LC/MS analysis. For each biological replicate, one center SDS/PAGE gel fraction was selected for triplicate LC/MS analysis. There were 121 proteins quantified in at least 5 of the 6 biological replicates. Of these 121 proteins, 106 were significant in differential expression by the t-test (p < 0.05) based on peptide-level replicates, 54 were significant in differential expression by SAM with Δ = 0.68 cutoff and false positive rate at 5%, and 29 were significant in differential expression by the t-test (p < 0.05) based on protein-level replicates. The results indicate that SAM appears to overcome the false positives one encounters using the peptide-based t-test while allowing for identification of a greater number of differentially expressed proteins than the protein-based t-test.ConclusionWe demonstrate that the SAM method can be adapted for effective significance analysis of proteomic data. It provides much richer information about the protein differential expression profiles and is particularly useful in the estimation of false discovery rates and miss rates.

Highlights

  • Fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis

  • We report the results of quantifying the protein relative abundance between the pH5 and pH7 unlabeled cells, with an emphasis on significance analysis of protein differential expression using the Significance Analysis of Microarray (SAM) method in comparison with fold change and conventional t-test methods

  • We report using the SAM method to solve the two-sample significance analysis problem in liquid chromatography-mass spectrometry (LC/MS) based quantitative proteomics

Read more

Summary

Introduction

Fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis. Meng et al used the differential mass spectrometry (dMS) method for label-free LC/MS profiling, demonstrating detection of peptides with a change as small as 1.5-fold with ~20% relative errors in peptide relative abundance in a processed plasma background [8]. Using the filtered common peptides, it was assessed that 95% of the total common peptides have intensities within a ~2-fold change for a pair of cultures of T47D human breast cancer cells, with SILAC analysis having the best summary statistics. These conclusions were drawn from peptide-level quantitation in combination with a ratio distribution analysis. Few have systematically assessed significance of analysis at a systems level along with estimation of false positive and negative rates

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.