Abstract
The method of 1-bit (“sign-sign”) random projections has been a popular tool for efficient search and machine learning on large datasets. Given two D-dim data vectors u, v ∈ ℝD, one can generate x = ∑i=1D uiri, and y = ∑i=1D viri, where ri ∼ N(0, 1) iid. Then one can estimate the cosine similarity ρ from sgn(x) and sgn(y). In this paper, we study a series of estimators for “sign-full” random projections. First we prove E(sgn(x)y) = √2/πρ, which provides an estimator for ρ. Interestingly this estimator can be substantially improved by normalizing y. Then we study estimators based on E (y−1x≥0 + y+1x<0) and its normalized version. We analyze the theoretical limit (using the MLE) and conclude that, among the proposed estimators, no single estimator can achieve (close to) the theoretical optimal asymptotic variance, for the entire range of ρ. On the other hand, the estimators can be combined to achieve the variance close to that of the MLE. In applications such as near neighbor search, duplicate detection, knn-classification, etc, the training data are first transformed via random projections and then only the signs of the projected data points are stored (i.e., the sgn(x)). The original training data are discarded. When a new data point arrives, we apply random projections but we do not necessarily need to quantize the projected data (i.e., the y) to 1-bit. Therefore, sign-full random projections can be practically useful. This gain essentially comes at no additional cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.